
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Implementation of the Smith-Waterman Algorithm

with Affine Gap Penalties for Identifying Conserved

Protein Domains

Varel Tiara - 13523008

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: vareltiara@gmail.com , 13523008@std.stei.itb.ac.id

Abstract—Sequence alignment is a foundational technique in

bioinformatics for inferring biological relationships. The Smith-

Waterman algorithm is a key method for local alignment, but its

accuracy depends critically on the gap penalty model. This paper

implements and comparatively analyzes the Smith-Waterman

algorithm using two models: a simple linear penalty and the more

complex affine gap penalty. The affine model, with separate

penalties for opening and extending a gap, is considered more

biologically realistic. To test this hypothesis, the algorithms were

applied to a specific case study: the identification of the

conserved DNA-binding domain of the human p53 tumor

suppressor protein (UniProt: P04637) within a homologous

protein from Drosophila melanogaster (UniProt: Q9N6D8). The

results demonstrate that while both models can identify

similarity, the affine gap penalty model produces a more

coherent and structurally sound alignment, consolidating gaps

into larger, contiguous blocks that are more consistent with

evolutionary events affecting protein loop regions. This alignment

strengthens the biological hypothesis for the conservation of the

p53 domain's core structure. Ultimately, this work demonstrates

the choice of a computational model is not a mere technical

detail, but a critical step that directly shapes the validity of

biological hypotheses.

Keywords—Dynamic Programming, Smith-Waterman

Algorithm, Local Sequence Alignment, Affine Gap Penalty,

Bioinformatics, Protein Domain, p53, BLOSUM62

I. INTRODUCTION

The field of bioinformatics has emerged as an indispensable
pillar of modern biology, facilitating discoveries in genomics,
proteomics, and evolutionary biology through the power of
computational analysis. At the heart of this new scientific
paradigm lies sequence alignment, a computational process for
comparing biological sequences to identify regions of
similarity. This process is not merely a pattern-matching
exercise. It is the primary method through which researchers
probe the evolutionary, structural, and functional relationships
encoded within the molecules of life. The intellectual
framework that justifies this approach is the sequence-
structure-function paradigm, a central tenet of molecular
biology which posits that the linear sequence of amino acids in
a protein dictates its unique three-dimensional structure, and

this structure, in turn, determines the protein's specific
biological function.

This fundamental link between sequence and function is
rooted in the evolutionary principle of homology, the inference
of shared ancestry. When a newly discovered sequence exhibits
significant similarity to a well-characterized one, it is possible
to transfer functional and structural annotations by homology.
Sequence alignment serves as the computational formalization
of this comparison, constructing a residue-by-residue
correspondence to highlight regions of conservation. Because
this relationship is probabilistic, rigorous computational
methods are required to distinguish statistically significant
similarity from random chance.

Further complicating this picture is the modular nature of
proteins. Proteins are rarely monolithic entities and are
frequently composed of discrete structural and functional units
known as domains. These domains act as evolutionary
"building blocks" that can be shuffled and combined to create
proteins with novel functionalities. This modularity makes the
problem of functional inference more tractable, as a robust
functional hypothesis can often be built by identifying a
protein's constituent domains. The identification of these
conserved domains, therefore, is a primary objective of applied
bioinformatics and demands algorithms specifically designed
to find local regions of high similarity within larger, otherwise
dissimilar sequences.

While such local alignment algorithms provide the
necessary framework, their accuracy hinges on solving the
central challenge of accurately modeling insertions and
deletions, also known as gaps. A simple linear gap penalty is
computationally efficient but biologically naive. In contrast, a
more sophisticated affine gap penalty model offers greater
biological realism by distinguishing between the cost of
opening and extending a gap. This paper, therefore, presents a
rigorous implementation and analysis of the Smith-Waterman
local alignment algorithm to demonstrate the superiority of the
affine model. This study has three main objectives. First, to
implement the Smith-Waterman algorithm with both linear and
affine gap penalties. Second, to apply these implementations to
a case study involving the identification of the human p53
DNA-binding domain in a Drosophila melanogaster homolog.

mailto:vareltiara@gmail.com
mailto:13523008@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Third, to conduct a comparative analysis showing that the
affine model produces a more biologically coherent hypothesis
of domain conservation.

II. THEORETICAL FOUNDATIONS

A. Dynamic Programming

Dynamic Programming is a powerful algorithmic method
for solving complex optimization problems by decomposing
them into a series of simpler, overlapping subproblems. The
solution to the larger problem is then built up from the stored
solutions of these subproblems. This approach is characterized
by several key features:

1. Stages and States: A problem suitable for DP can be
divided into a sequence of stages. At each stage, a
decision is made. Each stage consists of a number of
states, which represent the possible conditions or
information needed to make a decision at that point. In
sequence alignment, the process of filling the
alignment matrix column by column (or row by row)
can be viewed as progressing through stages, where
each cell (i,j) represents a specific state.

2. The Principle of Optimality: This is the cornerstone of
dynamic programming. It states that an optimal
solution to a multi-stage problem has the property that,
whatever the initial state and decisions are, the
remaining decisions must constitute an optimal policy
with regard to the state resulting from the first
decision. In simpler terms, if the total path is optimal,
then every sub-path within it must also be optimal.
This principle allows us to build an optimal solution
iteratively, using the optimal results from previous
stages without re-evaluating them.

The implementation of Dynamic Programming typically
involves a recursive relationship that connects the optimal
solution of a state at stage k to the optimal solutions of states at
stage k-1. By solving these recurrences, either in a forward
(bottom-up) or backward (top-down) manner, this algorithm
guaranteed to find the globally optimal solution to the entire
problem.

B. Global Alignment and Local Alignment

Pairwise sequence alignment is dominated by two distinct
philosophical and algorithmic approaches that are both built
upon dynamic programming. The choice between global and
local alignment is not arbitrary, as it represents a fundamental
hypothesis about the nature of the relationship between the
sequences being compared.

 Global Alignment (The Needleman-Wunsch
Algorithm): Global alignment seeks to find the
optimal alignment that spans the entire length of both
sequences. The foundational algorithm for this task is
the Needleman-Wunsch algorithm. The underlying
assumption is that the two sequences are homologous
across their full length and are of roughly equal size.
It is therefore the ideal method for comparing closely
related sequences, such as orthologs of the same gene

in different species. Its greatest weakness, however, is
its application to divergent sequences or those of
different lengths, where it will attempt to "force" an
alignment across non-homologous regions, often
resulting in a biologically meaningless output.

Fig. 1. Global Alignment [8]

 Local Alignment (The Smith-Waterman Algorithm):
In contrast, local alignment adopts a more focused
strategy. Its goal is to identify the single pair of
subsequences that yields the highest possible
alignment score, making no attempt to align residues
outside of this optimal region. The canonical
algorithm for this task is the Smith-Waterman
algorithm. It is predicated on the idea that even highly
dissimilar proteins can share short, conserved regions
crucial for function. This makes it the quintessential
tool for discovering functional domains and motifs,
searching databases, and comparing evolutionarily
distant sequences.

Fig. 2. Local Alignment [8]

C. The Smith-Waterman Algorithm

The Smith-Waterman algorithm provides a rigorous,

quantitative method for finding the optimal local alignment

between two sequences. It is guaranteed to find the pair of

subsequences with the highest possible score, given a specific

substitution matrix and gap penalty scheme. Its elegance and

power derive from its use of dynamic programming, a

computational technique that solves a complex problem by

breaking it down into a series of simpler, overlapping

subproblems. The algorithm's operation can be understood by

examining its three main stages: initialization, matrix filling

(recurrence), and traceback.

The dynamic programming matrix can be conceptualized
as a directed acyclic graph, where each cell (i, j) is a node. The

moves to neighboring cells (diagonal, up, left) represent

directed edges, and their weights are determined by the

substitution scores and gap penalties. Mismatches and gaps

contribute negative weights. Unlike a standard longest-path

algorithm, Smith-Waterman introduces a unique rule, the

max(..., 0) term. This rule acts as a filter, effectively

discarding any alignment path whose cumulative score drops

below zero. The algorithm is thus not merely filling a matrix

but is conducting an exhaustive search for all possible

positively-scoring paths, "islands of profitability" within a

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

"sea of cost." The value zero represents the shoreline,

preventing any path from becoming hopelessly negative and

allowing the algorithm to abandon a poor alignment and start a

new one anywhere in the matrix. This mechanism is the key to

its ability to find the most valuable "island," which
corresponds to the optimal local alignment.

The Dynamic Programming Matrix

The algorithm's workspace is a two-dimensional matrix,

typically denoted as H, with dimensions (m+1) x (n+1), where

m and n are the lengths of the two sequences, sequence A and

sequence B, respectively. The rows of the matrix correspond

to the residues of one sequence, and the columns correspond

to the residues of the other. Each cell H(i,j) in the matrix will

ultimately store the maximum score of any alignment ending

at position i of sequence A and position j of sequence B.

Initialization: The "Free Ride" Start

The initialization step is a defining feature of the Smith-
Waterman algorithm and is what distinguishes it

fundamentally from global alignment. The entire first row and

first column of the matrix H are set to zero.

H(i,0) = 0 for 0 <= i <= m

H(0,j) = 0 for 0 <= j <= n

This initialization is critical for local alignment. It signifies

that no penalty is incurred for starting an alignment in the

middle of either sequence. In the context of the path-finding

analogy, it means that an alignment can begin at any row or

column without having to pay an "end-gap" penalty to get

there. This "free ride" to any starting point allows the
algorithm to identify a high-scoring local alignment that may

be embedded deep within two much larger, non-homologous

sequences.

The Recurrence Relation: The Heart of the Algorithm

After initialization, the algorithm proceeds to fill the rest

of the matrix, typically from the top-left cell H(1,1) to the

bottom-right cell H(m,n). The score for each cell H(i,j) is

calculated using a recurrence relation that considers the scores

of its neighboring cells (to the top, left, and top-left diagonal)

and the chosen scoring scheme.

The recurrence relation for the Smith-Waterman algorithm

is as follows:

Here, s(ai, bj) is the substitution score for aligning residue ai

with bj (from a matrix like BLOSUM62), and Wk is the

penalty for a gap of length k.

The most crucial element of this recurrence is the inclusion

of 0 as one of the choices. If the scores derived from all three
possible moves (diagonal, up, or left) are negative, it signifies

that extending any existing alignment to this point would

decrease the overall score. In this case, H(i,j) is set to 0. This

action effectively terminates any low-scoring alignment path.

This "reset button" is what allows a new, independent local

alignment to begin at any point in the matrix, free from the
negative-scoring history of its surroundings. While filling the

matrix, it is also necessary to keep a traceback matrix that

stores pointers indicating which of the four choices led to the

score in each cell.

The Traceback Procedure: Reconstructing the Best Local Hit

Once the entire matrix H has been filled, the final step is to

identify and reconstruct the optimal local alignment. This

process, called the traceback, differs significantly from that of

global alignment.

1. Find the Starting Point: The algorithm first scans the

entire matrix H to find the cell with the maximum

score. This highest score is the score of the optimal
local alignment. The coordinates of this cell mark the

end of this alignment.

2. Trace the Path: Starting from this maximum-scoring

cell, the algorithm traces a path backward through the

matrix by following the pointers that were stored

during the fill step. If the pointer at H(i,j) points

diagonally to H(i-1, j-1), it signifies that ai was

aligned with bj. If it points up to H(i-1, j), it means ai

was aligned with a gap. If it points left to H(i, j-1), it

means bj was aligned with a gap.

3. Determine the Termination Point: The traceback
process continues, following the path of pointers

from cell to cell, until it reaches a cell with a score of

0. The point at which the score becomes zero marks

the beginning of the optimal local alignment.

The path traced from the highest-scoring cell to the first

zero-scoring cell defines the single best local alignment

between the two sequences. If multiple local alignments are of

interest, the process can be repeated by finding the next

highest score in the matrix that is not part of a previously

traced path.

D. Scoring Models

The mathematical optimality guaranteed by dynamic

programming is meaningless without a scoring scheme that

reflects biological reality. The biological relevance of the

resulting alignment is critically dependent on the parameters

used for scoring. This involves two key components: a

substitution matrix to score the alignment of two residues, and
a gap penalty model to quantify the cost of insertions or

deletions.

Protein Substitution Matrices: BLOSUM62

For protein sequences, a simple match/mismatch score is

insufficient because it fails to capture the biochemical and

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

evolutionary realities of amino acid substitutions. Some

substitutions between amino acids with similar properties

(e.g., size, charge) are often tolerated, while others are highly

disruptive. Substitution matrices provide a sophisticated

scoring system that reflects these realities, moving from
simple identity checks to probabilistic assessments of

evolutionary relationships.

The scores within these matrices are founded on a rigorous

statistical framework of log-odds ratios. The score for aligning

residue i with j reflects the likelihood of that pairing occurring

in a truly homologous alignment versus occurring merely by

chance. A positive score indicates that a substitution is

observed more often than expected, suggesting a functionally

tolerated evolutionary change. A negative score indicates a

substitution that is observed less often than by chance,

suggesting it is deleterious.

The BLOSUM Matrix Family

The BLOSUM (BLOcks SUbstitution Matrix) family,

developed by Henikoff and Henikoff in 1992, is derived

directly from empirical data and has become the most widely

used set of matrices for protein alignment.

 Derivation from BLOCKS: The matrices are derived

from the BLOCKS database, a collection of multiple

sequence alignments of short, highly conserved, and

importantly, ungapped regions (blocks). Using

ungapped blocks avoids the confounding effects of

gap penalties in the derivation of the substitution
scores.

 Clustering to Reduce Redundancy: To mitigate

sampling bias from over-represented proteins,

sequences within each block that share more than a

certain percentage of identity, r%, are clustered and

treated as a single sequence. Substitution frequencies

are then calculated between these less-redundant

clusters.

 Interpreting the BLOSUM Number: The number r in

a BLOSUMr matrix refers to this identity threshold.

The BLOSUM62 matrix is derived from sequences
clustered at ≥62% identity. This makes it ideal for

detecting moderately or distantly related proteins. A

higher number (e.g., BLOSUM80) is better for

closely related sequences, while a lower number

(e.g., BLOSUM45) is better for very distant

relationships.

BLOSUM62: The De Facto Standard
Among the series, the BLOSUM62 matrix has emerged as

the default for many bioinformatics tools (including BLASTp)
due to its excellent balance of sensitivity and specificity. Its
superiority can be contrasted with the earlier PAM (Point
Accepted Mutation) matrices, which were based on an explicit
evolutionary model extrapolated from closely related proteins.
The BLOSUM approach avoids this extrapolation by deriving
scores directly from blocks of varying similarity, better
capturing the observed patterns of substitution over long
evolutionary timescales. For this study, the standard
BLOSUM62 matrix is used.

The Affine Gap Penalty Model
A more realistic approach to scoring gaps is the affine gap

penalty model. Its biological rationale is that a single
mutational event is more likely to cause a multi-residue indel
than multiple separate events. This model assigns a high cost to
open a gap (Gopen) and a lower cost to extend it (Gextend). The
total penalty for a gap of length d is:

 Implementing this model efficiently requires an expansion
of the DP state space. Instead of a single matrix, three matrices
are used to track the score ending in a Match/Mismatch (M), an
insertion (Ix), or a deletion (Iy). This can be conceptualized as a
finite state automaton where the alignment can be in one of
three states. These matrices are filled using a set of coupled
recurrence relations:

The transition from any state at (i-1, j-1) to the match/mismatch
state M(i,j) simply adds the substitution score. A transition
from the match state M to a gap state (Ix or Iy) incurs the Gopen
penalty. Staying within a gap state incurs the smaller Gextend
penalty. This structure elegantly prevents the combination of
two gaps (e.g., moving from Ix to Iy), which is biologically
nonsensical, and correctly models the cost structure.

 For local alignment, the final score at cell (i,j) is the
maximum of the values from the three matrices, with the
addition of the zero term to allow for alignment restarts:

 The traceback procedure is necessarily more complex, as it
must navigate through all three matrices, following the path
that led to the maximum score at each step. Despite the
increased complexity, this algorithm maintains a time
complexity of O(mn), the same as the linear penalty model,
while offering significantly greater biological realism.

III. IMPLEMENTATION

A. Program Architecture

The program was designed with a modular structure in
Python to clearly separate data handling, algorithmic
computation, and result formatting. The overall workflow
proceeds in a linear fashion.

First, the program takes two input files in FASTA format,
one containing the query sequence and the other containing the
target sequence. A utility module, utils.py, is responsible for
parsing these files to extract the raw amino acid sequences.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

This module also handles the loading of the standard
BLOSUM62 substitution matrix from the Biopython library.

Next, the main execution script, main.py, orchestrates the
comparative analysis. It calls the alignment function twice. The
first call executes a Smith-Waterman alignment using a simple
linear gap penalty model. The second call executes the
alignment using the more complex affine gap penalty model.

Finally, upon completion of each alignment, a formatting
function is used to generate a human-readable output that
includes the final alignment score and the aligned sequences.
This output is printed to the console for immediate review and
is also saved to a text file in the results/ directory for permanent
record.

Fig. 3. Folder Structure
(https://github.com/varel183/Makalah_STIMA_13523008)

B. Algorithmic Implementation

The core of the program consists of two distinct Python

functions, each implementing one of the gap penalty models

discussed in the theoretical foundations. Both implementations

leverage the NumPy library for efficient creation and

manipulation of the dynamic programming matrices.

1. Linear Gap Penalty Implementation

For the baseline linear model, a single two-

dimensional matrix, H, of size (m+1) x (n+1) is

initialized with zeros. The program then populates

this matrix using nested loops that iterate through the

sequences. For each cell H(i,j), the score is calculated

according to the standard Smith-Waterman

recurrence relation, taking the maximum value

derived from a diagonal move (match/mismatch), a

move from above (deletion), a move from the left

(insertion), or zero.

Fig. 4. Linear Gap Penalty Implementation
(https://github.com/varel183/Makalah_STIMA_13523008/blob/main/src/main.

py)

2. Affine Gap Penalty Implementation
The main implementation for this study addresses the

affine gap penalty model. This required an expansion

of the dynamic programming state space. Three

distinct (m+1) x (n+1) matrices were created using

NumPy, corresponding to the three states discussed

in the previous chapter.

 M: Stores the optimal score for an alignment

ending in a match or mismatch state.

 Ix: Stores the optimal score for an alignment

ending with a gap in the target sequence (an

insertion relative to the query).

 Iy: Stores the optimal score for an alignment

ending with a gap in the query sequence (a

deletion relative to the query).

https://github.com/varel183/Makalah_STIMA_13523008
https://github.com/varel183/Makalah_STIMA_13523008/blob/main/src/main.py
https://github.com/varel183/Makalah_STIMA_13523008/blob/main/src/main.py

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Fig. 5. Affine Gap Penalty Implementation
(https://github.com/varel183/Makalah_STIMA_13523008/blob/main/src/main.

py)

The traceback procedure for the affine model is necessarily
more complex. It begins at the max_pos found during the fill
stage. At each step, it determines which of the three matrices
(M, Ix, or Iy) contributed to the score, and then checks the
recurrence relation for that specific matrix to decide the
preceding move. This process is repeated until a cell with a
score of zero is reached.

C. Experiments

The algorithms were applied to a specific biological case
study to compare their performance.

 Query Sequence: The query was the DNA-binding
domain of the human p53 tumor suppressor protein
(residues 102-292). This specific subsequence was
extracted from the canonical human p53 protein,
which corresponds to UniProt accession number
P04637.

Fig. 6. Query Sequence
(https://www.uniprot.org/uniprotkb/P04637/entry)

 Target Sequence: The target was the full-length p53
protein homolog from the fruit fly, Drosophila
melanogaster. This corresponds to UniProt accession
number Q9N6D8.

Fig. 7. Target Sequence
(https://www.uniprot.org/uniprotkb/Q9N6D8/entry)

The following scoring parameters were used for the two
comparative experiments:

 Substitution Matrix: The standard BLOSUM62 matrix
was used for both alignment models to score amino
acid substitutions.

 Linear Gap Penalty: For the baseline model, a linear
gap penalty of -2 was applied.

 Affine Gap Penalties: For the main experimental
model, a gap opening penalty of -10 and a gap
extension penalty of -1 were used.

IV. RESULT AND ANALYSIS

A. Alignment with a Linear Gap Penalty

The initial experiment was conducted using a standard

linear gap penalty, where the penalty for any gap, regardless
of its length, was set to w = -2. The algorithm processed the

query sequence (human p53 DNA-binding domain) and the

target sequence (Drosophila melanogaster p53) and produced

a maximal alignment score of 315. The optimal local

alignment generated by this model is presented in Figure 8.

https://github.com/varel183/Makalah_STIMA_13523008/blob/main/src/main.py
https://github.com/varel183/Makalah_STIMA_13523008/blob/main/src/main.py
https://www.uniprot.org/uniprotkb/P04637/entry
https://www.uniprot.org/uniprotkb/Q9N6D8/entry

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Fig. 8. Local Alignment using a Linear Gap Penalty

(https://github.com/varel183/Makalah_STIMA_13523008/blob/main/results/ali
gnment_linear.txt)

A visual inspection of the alignment in Figure 8

immediately reveals a key characteristic, the alignment is

fragmented by numerous, small, scattered gaps. This

"peppering" of gaps is evident throughout the alignment, with

examples such as D-D-RN-TFR and VDS-TP-PP-GTRV. This

pattern is a direct consequence of the linear penalty model,

where the cost to open a new gap is identical to the cost of

extending one. The algorithm, therefore, has no incentive to

group gaps and will frequently insert single gaps to achieve
minor increases in the substitution score. From a biological

standpoint, this scenario is less plausible as it implies a large

number of independent, single-residue indel events, which are

evolutionarily less frequent than single, larger indel events that

might occur in a single mutational step.

B. Alignment with an Affine Gap Penalty

The second experiment utilized the affine gap penalty
model with parameters set to Gopen = -10 and Gextend = -1. This
model produced an optimal local alignment score of 151. The
resulting alignment is shown in Figure 9.

Fig. 9. Local Alignment using an Affine Gap Penalty
(https://github.com/varel183/Makalah_STIMA_13523008/blob/main/results/ali

gnment_affine.txt)

The structure of this alignment is markedly different from the
one produced by the linear model. The most notable feature is
the consolidation of gaps into larger, more cohesive blocks.
Clear examples include IRVE----GNLR, VPY----EPPEV, and
RKK-----GEPH. This is the intended outcome of the affine
model. The high cost of opening a gap (-10) discourages the

creation of new gaps, while the much lower extension cost (-1)
incentivizes the lengthening of existing ones. This structure
better represents a more probable evolutionary scenario, such
as a single insertion or deletion event affecting a contiguous
block of amino acids. Such events often correspond to changes
in the structurally flexible loop regions of a protein, which
connect its core secondary structure elements.

C. Comparative Analysis

Comparing the outputs from the two models (Figure 8 and
9) highlights the profound impact of the scoring scheme on the
resulting biological hypothesis. Although the linear model
produced a numerically higher score (315 vs. 151), this is a
mathematical artifact of its less restrictive nature. The affine
gap model, despite its lower score, produces an alignment that
is structurally and biologically far more coherent.

The alignment generated by the affine model presents a
more robust and parsimonious evolutionary hypothesis. The
consolidation of gaps into coherent blocks suggests that the
core structural elements of the p53 DNA-binding domain are
preserved between human and Drosophila, with indel events
largely confined to the loop regions that connect them. This is
the expected pattern for a conserved functional domain.

Furthermore, an examination of the conserved columns
(indicated by |) in the affine alignment reveals the preservation
of key functional residues. For instance, the alignment
correctly pairs several Cysteine (C) and Arginine (R) residues,
which are well-documented in the literature as being critical for
the structural integrity (via zinc coordination) and DNA-
contact functions of the p53 DNA-binding domain. The linear
model's fragmented alignment obscures some of these key
correspondences.

In conclusion, the affine model's ability to produce an
alignment that correctly highlights the conservation of non-
negotiable functional sites, while confining gaps to likely non-
critical regions, provides strong evidence for its superiority in
this context. It generates a more trustworthy computational
hypothesis, suggesting that the Drosophila p53 protein indeed
contains a domain that is not only similar in sequence but also
likely conserved in both structure and function to its human
counterpart.

V. CONCLUSION

This paper presented a rigorous implementation and a
comparative analysis of the Smith-Waterman local alignment
algorithm under two distinct gap penalty frameworks. The
study systematically compared the outputs of a simple linear
gap penalty model against those of a more complex,
biologically-motivated affine gap penalty model. Through a
practical case study focused on identifying the conserved
DNA-binding domain of the human p53 protein within its
Drosophila melanogaster homolog, this work aimed to
demonstrate how the underlying mathematical model directly
influences the quality and biological interpretability of
sequence alignments. The implementation was successfully
developed in Python, leveraging the NumPy library for
efficient matrix computation, and was used to generate
alignment data for both models.

https://github.com/varel183/Makalah_STIMA_13523008/blob/main/results/alignment_linear.txt
https://github.com/varel183/Makalah_STIMA_13523008/blob/main/results/alignment_linear.txt
https://github.com/varel183/Makalah_STIMA_13523008/blob/main/results/alignment_affine.txt
https://github.com/varel183/Makalah_STIMA_13523008/blob/main/results/alignment_affine.txt

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

The central finding of this study is that the affine gap
penalty model, despite often yielding a lower numerical score,
produces alignments that are demonstrably superior in
biological relevance. While the linear model generated
fragmented alignments peppered with small, scattered gaps, the
affine model successfully consolidated these into larger,
contiguous blocks. This outcome aligns more closely with the
current understanding of molecular evolution, where single,
large-scale insertion or deletion events affecting structural
loops are considered more probable than numerous,
independent single-residue mutations. Consequently, the affine
gap penalty model generates a more robust and structurally
coherent alignment, providing a stronger and more trustworthy
computational hypothesis for the presence and boundaries of a
conserved functional domain.

While this study successfully demonstrated the superiority
of the affine model in a specific and important case, several
avenues for future research remain open. First, the performance
of the Python implementation, while suitable for this analysis,
could be significantly optimized for large-scale database
searches. This could be achieved through reimplementation in
a lower-level compiled language like C++ or by exploring
parallelization techniques. Second, the conclusions could be
further validated by applying this comparative analysis to a
broader range of protein families with different evolutionary
rates and structural characteristics. Finally, future work could
explore even more sophisticated scoring schemes, such as
context-specific or convex gap penalty models, to investigate
whether further gains in biological accuracy can be achieved,
continuing the pursuit of computational models that more
perfectly mirror evolutionary reality.

VIDEO LINK AT YOUTUBE

https://youtu.be/4oS7rDhzv0k

GITHUB

https://github.com/varel183/Makalah_STIMA_13523008

ACKNOWLEDGMENT

The author wishes to express sincere gratitude to the
lecturing team of the IF2211 Algorithm Strategies course for
the invaluable guidance and knowledge provided throughout
the semester. Special thanks are extended to Dr. Rinaldi as the
course coordinator, as well as to Dr. Nur Ulfa Maulidevi and
Monterico Adrian, M.T., for their lectures and support during
the second semester of the 2024/2025 academic year. Their
instruction formed the essential foundation upon which this
work was built.

This research would not have been possible without the
publicly available data from the UniProt Consortium and the

National Center for Biotechnology Information (NCBI).
Furthermore, the implementation of the algorithms relied on
the powerful open-source libraries NumPy and Biopython, and
the author acknowledges the contributions of their respective
development communities. Finally, thanks are also due to
friends and colleagues for the insightful discussions and
collaborative learning environment.

REFERENCES

[1] T.F. Smith and M.S. Waterman, “Identification of common molecular

subsequences,” J. Mol. Biol., vol. 147, no. 1, pp. 195-197, Mar. 1981.

[2] O. Gotoh, “An improved algorithm for matching biological sequences,”

J. Mol. Biol., vol. 162, no. 3, pp. 705-708, Dec. 1982.

[3] S.B. Needleman and C.D. Wunsch, “A general method applicable to the
search for similarities in the amino acid sequence of two proteins,” J.

Mol. Biol., vol. 48, no. 3, pp. 443-453, Mar. 1970.

[4] S. Henikoff and J.G. Henikoff, “Amino acid substitution matrices from
protein blocks,” Proc. Natl. Acad. Sci. U.S.A., vol. 89, no. 22, pp.

10915-10919, Nov. 1992.

[5] S.F. Altschul, T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W.
Miller, and D.J. Lipman, “Gapped BLAST and PSI-BLAST: a new

generation of protein database search programs,” Nucleic Acids Res.,

vol. 25, no. 17, pp. 3389-3402, Sep. 1997.

[6] The UniProt Consortium, "UniProt: the universal protein knowledgebase

in 2023," Nucleic Acids Res., vol. 51, no. D1, pp. D523-D531, Jan.

2023.

[7] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological Sequence

Analysis: Probabilistic Models of Proteins and Nucleic Acids.

Cambridge: Cambridge University Press, 1998, pp. 12-45.

[8] Mount, D. W. (2001) Bioinformatics: sequence and genome analysis.

Cold Spring Harbor Laboratory Press.

[9] R. Munir, "Program Dinamis (Dynamic Programming) Bagian 1,"

Bahan Kuliah IF2211 Strategi Algoritma, Program Studi Teknik
Informatika, STEI-ITB, 2025. [Online]. Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-

Program-Dinamis-(2025)-Bagian1.pdf. [Accessed: Jun. 23, 2025].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 24 Juni 2025

Varel Tiara - 13523008

https://youtu.be/4oS7rDhzv0k
https://github.com/varel183/Makalah_STIMA_13523008
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-Program-Dinamis-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-Program-Dinamis-(2025)-Bagian1.pdf

	I. Introduction
	II. Theoretical Foundations
	A. Dynamic Programming
	B. Global Alignment and Local Alignment
	C. The Smith-Waterman Algorithm
	D. Scoring Models

	III. Implementation
	A. Program Architecture
	B. Algorithmic Implementation
	C. Experiments

	IV. Result and Analysis
	A. Alignment with a Linear Gap Penalty
	B. Alignment with an Affine Gap Penalty
	C. Comparative Analysis

	V. Conclusion
	Video Link at Youtube
	Github
	Acknowledgment
	References

