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Abstract—Sequence alignment is a foundational technique in 

bioinformatics for inferring biological relationships. The Smith-

Waterman algorithm is a key method for local alignment, but its 

accuracy depends critically on the gap penalty model. This paper 

implements and comparatively analyzes the Smith-Waterman 

algorithm using two models: a simple linear penalty and the more 

complex affine gap penalty. The affine model, with separate 

penalties for opening and extending a gap, is considered more 

biologically realistic. To test this hypothesis, the algorithms were 

applied to a specific case study: the identification of the 

conserved DNA-binding domain of the human p53 tumor 

suppressor protein (UniProt: P04637) within a homologous 

protein from Drosophila melanogaster (UniProt: Q9N6D8). The 

results demonstrate that while both models can identify 

similarity, the affine gap penalty model produces a more 

coherent and structurally sound alignment, consolidating gaps 

into larger, contiguous blocks that are more consistent with 

evolutionary events affecting protein loop regions. This alignment 

strengthens the biological hypothesis for the conservation of the 

p53 domain's core structure. Ultimately, this work demonstrates 

the choice of a computational model is not a mere technical 

detail, but a critical step that directly shapes the validity of 

biological hypotheses.    

Keywords—Dynamic Programming, Smith-Waterman 

Algorithm, Local Sequence Alignment, Affine Gap Penalty, 

Bioinformatics, Protein Domain, p53, BLOSUM62 

I.  INTRODUCTION 

The field of bioinformatics has emerged as an indispensable 
pillar of modern biology, facilitating discoveries in genomics, 
proteomics, and evolutionary biology through the power of 
computational analysis. At the heart of this new scientific 
paradigm lies sequence alignment, a computational process for 
comparing biological sequences to identify regions of 
similarity. This process is not merely a pattern-matching 
exercise. It is the primary method through which researchers 
probe the evolutionary, structural, and functional relationships 
encoded within the molecules of life. The intellectual 
framework that justifies this approach is the sequence-
structure-function paradigm, a central tenet of molecular 
biology which posits that the linear sequence of amino acids in 
a protein dictates its unique three-dimensional structure, and 

this structure, in turn, determines the protein's specific 
biological function. 

This fundamental link between sequence and function is 
rooted in the evolutionary principle of homology, the inference 
of shared ancestry. When a newly discovered sequence exhibits 
significant similarity to a well-characterized one, it is possible 
to transfer functional and structural annotations by homology. 
Sequence alignment serves as the computational formalization 
of this comparison, constructing a residue-by-residue 
correspondence to highlight regions of conservation. Because 
this relationship is probabilistic, rigorous computational 
methods are required to distinguish statistically significant 
similarity from random chance. 

Further complicating this picture is the modular nature of 
proteins. Proteins are rarely monolithic entities and are 
frequently composed of discrete structural and functional units 
known as domains. These domains act as evolutionary 
"building blocks" that can be shuffled and combined to create 
proteins with novel functionalities. This modularity makes the 
problem of functional inference more tractable, as a robust 
functional hypothesis can often be built by identifying a 
protein's constituent domains. The identification of these 
conserved domains, therefore, is a primary objective of applied 
bioinformatics and demands algorithms specifically designed 
to find local regions of high similarity within larger, otherwise 
dissimilar sequences. 

While such local alignment algorithms provide the 
necessary framework, their accuracy hinges on solving the 
central challenge of accurately modeling insertions and 
deletions, also known as gaps. A simple linear gap penalty is 
computationally efficient but biologically naive. In contrast, a 
more sophisticated affine gap penalty model offers greater 
biological realism by distinguishing between the cost of 
opening and extending a gap. This paper, therefore, presents a 
rigorous implementation and analysis of the Smith-Waterman 
local alignment algorithm to demonstrate the superiority of the 
affine model. This study has three main objectives. First, to 
implement the Smith-Waterman algorithm with both linear and 
affine gap penalties. Second, to apply these implementations to 
a case study involving the identification of the human p53 
DNA-binding domain in a Drosophila melanogaster homolog. 
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Third, to conduct a comparative analysis showing that the 
affine model produces a more biologically coherent hypothesis 
of domain conservation. 

II. THEORETICAL FOUNDATIONS 

A. Dynamic Programming 

Dynamic Programming is a powerful algorithmic method 
for solving complex optimization problems by decomposing 
them into a series of simpler, overlapping subproblems. The 
solution to the larger problem is then built up from the stored 
solutions of these subproblems. This approach is characterized 
by several key features: 

1. Stages and States: A problem suitable for DP can be 
divided into a sequence of stages. At each stage, a 
decision is made. Each stage consists of a number of 
states, which represent the possible conditions or 
information needed to make a decision at that point. In 
sequence alignment, the process of filling the 
alignment matrix column by column (or row by row) 
can be viewed as progressing through stages, where 
each cell (i,j) represents a specific state. 

2. The Principle of Optimality: This is the cornerstone of 
dynamic programming. It states that an optimal 
solution to a multi-stage problem has the property that, 
whatever the initial state and decisions are, the 
remaining decisions must constitute an optimal policy 
with regard to the state resulting from the first 
decision. In simpler terms, if the total path is optimal, 
then every sub-path within it must also be optimal. 
This principle allows us to build an optimal solution 
iteratively, using the optimal results from previous 
stages without re-evaluating them. 

The implementation of Dynamic Programming typically 
involves a recursive relationship that connects the optimal 
solution of a state at stage k to the optimal solutions of states at 
stage k-1. By solving these recurrences, either in a forward 
(bottom-up) or backward (top-down) manner, this algorithm 
guaranteed to find the globally optimal solution to the entire 
problem. 

B. Global Alignment and Local Alignment 

Pairwise sequence alignment is dominated by two distinct 
philosophical and algorithmic approaches that are both built 
upon dynamic programming. The choice between global and 
local alignment is not arbitrary, as it represents a fundamental 
hypothesis about the nature of the relationship between the 
sequences being compared. 

 Global Alignment (The Needleman-Wunsch 
Algorithm): Global alignment seeks to find the 
optimal alignment that spans the entire length of both 
sequences. The foundational algorithm for this task is 
the Needleman-Wunsch algorithm. The underlying 
assumption is that the two sequences are homologous 
across their full length and are of roughly equal size. 
It is therefore the ideal method for comparing closely 
related sequences, such as orthologs of the same gene 

in different species. Its greatest weakness, however, is 
its application to divergent sequences or those of 
different lengths, where it will attempt to "force" an 
alignment across non-homologous regions, often 
resulting in a biologically meaningless output. 

 

Fig. 1. Global Alignment [8] 

 Local Alignment (The Smith-Waterman Algorithm): 
In contrast, local alignment adopts a more focused 
strategy. Its goal is to identify the single pair of 
subsequences that yields the highest possible 
alignment score, making no attempt to align residues 
outside of this optimal region. The canonical 
algorithm for this task is the Smith-Waterman 
algorithm. It is predicated on the idea that even highly 
dissimilar proteins can share short, conserved regions 
crucial for function. This makes it the quintessential 
tool for discovering functional domains and motifs, 
searching databases, and comparing evolutionarily 
distant sequences. 

 

Fig. 2. Local Alignment [8] 

C. The Smith-Waterman Algorithm 

The Smith-Waterman algorithm provides a rigorous, 

quantitative method for finding the optimal local alignment 

between two sequences. It is guaranteed to find the pair of 

subsequences with the highest possible score, given a specific 

substitution matrix and gap penalty scheme. Its elegance and 

power derive from its use of dynamic programming, a 

computational technique that solves a complex problem by 

breaking it down into a series of simpler, overlapping 

subproblems. The algorithm's operation can be understood by 

examining its three main stages: initialization, matrix filling 

(recurrence), and traceback.    

The dynamic programming matrix can be conceptualized 
as a directed acyclic graph, where each cell (i, j) is a node. The 

moves to neighboring cells (diagonal, up, left) represent 

directed edges, and their weights are determined by the 

substitution scores and gap penalties. Mismatches and gaps 

contribute negative weights. Unlike a standard longest-path 

algorithm, Smith-Waterman introduces a unique rule, the 

max(..., 0) term. This rule acts as a filter, effectively 

discarding any alignment path whose cumulative score drops 

below zero. The algorithm is thus not merely filling a matrix 

but is conducting an exhaustive search for all possible 

positively-scoring paths, "islands of profitability" within a 
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"sea of cost." The value zero represents the shoreline, 

preventing any path from becoming hopelessly negative and 

allowing the algorithm to abandon a poor alignment and start a 

new one anywhere in the matrix. This mechanism is the key to 

its ability to find the most valuable "island," which 
corresponds to the optimal local alignment. 

The Dynamic Programming Matrix 

The algorithm's workspace is a two-dimensional matrix, 

typically denoted as H, with dimensions (m+1) x (n+1), where 

m and n are the lengths of the two sequences, sequence A and 

sequence B, respectively. The rows of the matrix correspond 

to the residues of one sequence, and the columns correspond 

to the residues of the other. Each cell H(i,j) in the matrix will 

ultimately store the maximum score of any alignment ending 

at position i of sequence A and position j of sequence B. 

Initialization: The "Free Ride" Start 

The initialization step is a defining feature of the Smith-
Waterman algorithm and is what distinguishes it 

fundamentally from global alignment. The entire first row and 

first column of the matrix H are set to zero.    

H(i,0) = 0 for 0 <= i <= m 

H(0,j) = 0 for 0 <= j <= n 

This initialization is critical for local alignment. It signifies 

that no penalty is incurred for starting an alignment in the 

middle of either sequence. In the context of the path-finding 

analogy, it means that an alignment can begin at any row or 

column without having to pay an "end-gap" penalty to get 

there. This "free ride" to any starting point allows the 
algorithm to identify a high-scoring local alignment that may 

be embedded deep within two much larger, non-homologous 

sequences. 

The Recurrence Relation: The Heart of the Algorithm 

After initialization, the algorithm proceeds to fill the rest 

of the matrix, typically from the top-left cell H(1,1) to the 

bottom-right cell H(m,n). The score for each cell H(i,j) is 

calculated using a recurrence relation that considers the scores 

of its neighboring cells (to the top, left, and top-left diagonal) 

and the chosen scoring scheme.    

The recurrence relation for the Smith-Waterman algorithm 

is as follows: 

 
Here, s(ai, bj) is the substitution score for aligning residue ai 

with bj (from a matrix like BLOSUM62), and Wk is the 

penalty for a gap of length k.    

The most crucial element of this recurrence is the inclusion 

of 0 as one of the choices. If the scores derived from all three 
possible moves (diagonal, up, or left) are negative, it signifies 

that extending any existing alignment to this point would 

decrease the overall score. In this case, H(i,j) is set to 0. This 

action effectively terminates any low-scoring alignment path. 

This "reset button" is what allows a new, independent local 

alignment to begin at any point in the matrix, free from the 
negative-scoring history of its surroundings. While filling the 

matrix, it is also necessary to keep a traceback matrix that 

stores pointers indicating which of the four choices led to the 

score in each cell. 

The Traceback Procedure: Reconstructing the Best Local Hit 

Once the entire matrix H has been filled, the final step is to 

identify and reconstruct the optimal local alignment. This 

process, called the traceback, differs significantly from that of 

global alignment. 

1. Find the Starting Point: The algorithm first scans the 

entire matrix H to find the cell with the maximum 

score. This highest score is the score of the optimal 
local alignment. The coordinates of this cell mark the 

end of this alignment.    

2. Trace the Path: Starting from this maximum-scoring 

cell, the algorithm traces a path backward through the 

matrix by following the pointers that were stored 

during the fill step. If the pointer at H(i,j) points 

diagonally to H(i-1, j-1), it signifies that ai was 

aligned with bj. If it points up to H(i-1, j), it means ai 

was aligned with a gap. If it points left to H(i, j-1), it 

means bj was aligned with a gap. 

3. Determine the Termination Point: The traceback 
process continues, following the path of pointers 

from cell to cell, until it reaches a cell with a score of 

0. The point at which the score becomes zero marks 

the beginning of the optimal local alignment. 

The path traced from the highest-scoring cell to the first 

zero-scoring cell defines the single best local alignment 

between the two sequences. If multiple local alignments are of 

interest, the process can be repeated by finding the next 

highest score in the matrix that is not part of a previously 

traced path. 

D. Scoring Models 

The mathematical optimality guaranteed by dynamic 

programming is meaningless without a scoring scheme that 

reflects biological reality. The biological relevance of the 

resulting alignment is critically dependent on the parameters 

used for scoring. This involves two key components: a 

substitution matrix to score the alignment of two residues, and 
a gap penalty model to quantify the cost of insertions or 

deletions. 

 

Protein Substitution Matrices: BLOSUM62 

For protein sequences, a simple match/mismatch score is 

insufficient because it fails to capture the biochemical and 
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evolutionary realities of amino acid substitutions. Some 

substitutions between amino acids with similar properties 

(e.g., size, charge) are often tolerated, while others are highly 

disruptive. Substitution matrices provide a sophisticated 

scoring system that reflects these realities, moving from 
simple identity checks to probabilistic assessments of 

evolutionary relationships. 

The scores within these matrices are founded on a rigorous 

statistical framework of log-odds ratios. The score for aligning 

residue i with j reflects the likelihood of that pairing occurring 

in a truly homologous alignment versus occurring merely by 

chance. A positive score indicates that a substitution is 

observed more often than expected, suggesting a functionally 

tolerated evolutionary change. A negative score indicates a 

substitution that is observed less often than by chance, 

suggesting it is deleterious. 

 
The BLOSUM Matrix Family 

The BLOSUM (BLOcks SUbstitution Matrix) family, 

developed by Henikoff and Henikoff in 1992, is derived 

directly from empirical data and has become the most widely 

used set of matrices for protein alignment. 

 Derivation from BLOCKS: The matrices are derived 

from the BLOCKS database, a collection of multiple 

sequence alignments of short, highly conserved, and 

importantly, ungapped regions (blocks). Using 

ungapped blocks avoids the confounding effects of 

gap penalties in the derivation of the substitution 
scores. 

 Clustering to Reduce Redundancy: To mitigate 

sampling bias from over-represented proteins, 

sequences within each block that share more than a 

certain percentage of identity, r%, are clustered and 

treated as a single sequence. Substitution frequencies 

are then calculated between these less-redundant 

clusters. 

 Interpreting the BLOSUM Number: The number r in 

a BLOSUMr matrix refers to this identity threshold. 

The BLOSUM62 matrix is derived from sequences 
clustered at ≥62% identity. This makes it ideal for 

detecting moderately or distantly related proteins. A 

higher number (e.g., BLOSUM80) is better for 

closely related sequences, while a lower number 

(e.g., BLOSUM45) is better for very distant 

relationships. 

 

BLOSUM62: The De Facto Standard 
Among the series, the BLOSUM62 matrix has emerged as 

the default for many bioinformatics tools (including BLASTp) 
due to its excellent balance of sensitivity and specificity. Its 
superiority can be contrasted with the earlier PAM (Point 
Accepted Mutation) matrices, which were based on an explicit 
evolutionary model extrapolated from closely related proteins. 
The BLOSUM approach avoids this extrapolation by deriving 
scores directly from blocks of varying similarity, better 
capturing the observed patterns of substitution over long 
evolutionary timescales. For this study, the standard 
BLOSUM62 matrix is used. 

The Affine Gap Penalty Model 
A more realistic approach to scoring gaps is the affine gap 

penalty model. Its biological rationale is that a single 
mutational event is more likely to cause a multi-residue indel 
than multiple separate events. This model assigns a high cost to 
open a gap (Gopen) and a lower cost to extend it (Gextend). The 
total penalty for a gap of length d is: 

 

 Implementing this model efficiently requires an expansion 
of the DP state space. Instead of a single matrix, three matrices 
are used to track the score ending in a Match/Mismatch (M), an 
insertion (Ix), or a deletion (Iy). This can be conceptualized as a 
finite state automaton where the alignment can be in one of 
three states. These matrices are filled using a set of coupled 
recurrence relations: 

 

 

The transition from any state at (i-1, j-1) to the match/mismatch 
state M(i,j) simply adds the substitution score. A transition 
from the match state M to a gap state (Ix or Iy) incurs the Gopen 
penalty. Staying within a gap state incurs the smaller Gextend 
penalty. This structure elegantly prevents the combination of 
two gaps (e.g., moving from Ix to Iy), which is biologically 
nonsensical, and correctly models the cost structure. 

 For local alignment, the final score at cell (i,j) is the 
maximum of the values from the three matrices, with the 
addition of the zero term to allow for alignment restarts: 

 

 The traceback procedure is necessarily more complex, as it 
must navigate through all three matrices, following the path 
that led to the maximum score at each step. Despite the 
increased complexity, this algorithm maintains a time 
complexity of O(mn), the same as the linear penalty model, 
while offering significantly greater biological realism. 

III. IMPLEMENTATION 

A. Program Architecture 

The program was designed with a modular structure in 
Python to clearly separate data handling, algorithmic 
computation, and result formatting. The overall workflow 
proceeds in a linear fashion. 

First, the program takes two input files in FASTA format, 
one containing the query sequence and the other containing the 
target sequence. A utility module, utils.py, is responsible for 
parsing these files to extract the raw amino acid sequences. 
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This module also handles the loading of the standard 
BLOSUM62 substitution matrix from the Biopython library. 

Next, the main execution script, main.py, orchestrates the 
comparative analysis. It calls the alignment function twice. The 
first call executes a Smith-Waterman alignment using a simple 
linear gap penalty model. The second call executes the 
alignment using the more complex affine gap penalty model. 

Finally, upon completion of each alignment, a formatting 
function is used to generate a human-readable output that 
includes the final alignment score and the aligned sequences. 
This output is printed to the console for immediate review and 
is also saved to a text file in the results/ directory for permanent 
record. 

 

Fig. 3. Folder Structure 
(https://github.com/varel183/Makalah_STIMA_13523008) 

B. Algorithmic Implementation 

The core of the program consists of two distinct Python 

functions, each implementing one of the gap penalty models 

discussed in the theoretical foundations. Both implementations 

leverage the NumPy library for efficient creation and 

manipulation of the dynamic programming matrices. 

1. Linear Gap Penalty Implementation 

For the baseline linear model, a single two-

dimensional matrix, H, of size (m+1) x (n+1) is 

initialized with zeros. The program then populates 

this matrix using nested loops that iterate through the 

sequences. For each cell H(i,j), the score is calculated 

according to the standard Smith-Waterman 

recurrence relation, taking the maximum value 

derived from a diagonal move (match/mismatch), a 

move from above (deletion), a move from the left 

(insertion), or zero. 

 

Fig. 4. Linear Gap Penalty Implementation 
(https://github.com/varel183/Makalah_STIMA_13523008/blob/main/src/main.

py) 

2. Affine Gap Penalty Implementation 
The main implementation for this study addresses the 

affine gap penalty model. This required an expansion 

of the dynamic programming state space. Three 

distinct (m+1) x (n+1) matrices were created using 

NumPy, corresponding to the three states discussed 

in the previous chapter. 

 M: Stores the optimal score for an alignment 

ending in a match or mismatch state. 

 Ix: Stores the optimal score for an alignment 

ending with a gap in the target sequence (an 

insertion relative to the query). 

 Iy: Stores the optimal score for an alignment 

ending with a gap in the query sequence (a 

deletion relative to the query). 

https://github.com/varel183/Makalah_STIMA_13523008
https://github.com/varel183/Makalah_STIMA_13523008/blob/main/src/main.py
https://github.com/varel183/Makalah_STIMA_13523008/blob/main/src/main.py
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Fig. 5. Affine Gap Penalty Implementation 
(https://github.com/varel183/Makalah_STIMA_13523008/blob/main/src/main.

py) 

The traceback procedure for the affine model is necessarily 
more complex. It begins at the max_pos found during the fill 
stage. At each step, it determines which of the three matrices 
(M, Ix, or Iy) contributed to the score, and then checks the 
recurrence relation for that specific matrix to decide the 
preceding move. This process is repeated until a cell with a 
score of zero is reached. 

C. Experiments 

The algorithms were applied to a specific biological case 
study to compare their performance. 

 Query Sequence: The query was the DNA-binding 
domain of the human p53 tumor suppressor protein 
(residues 102-292). This specific subsequence was 
extracted from the canonical human p53 protein, 
which corresponds to UniProt accession number 
P04637. 

 

Fig. 6. Query Sequence 
(https://www.uniprot.org/uniprotkb/P04637/entry)  

 Target Sequence: The target was the full-length p53 
protein homolog from the fruit fly, Drosophila 
melanogaster. This corresponds to UniProt accession 
number Q9N6D8. 

 

Fig. 7. Target Sequence 
(https://www.uniprot.org/uniprotkb/Q9N6D8/entry)  

The following scoring parameters were used for the two 
comparative experiments: 

 Substitution Matrix: The standard BLOSUM62 matrix 
was used for both alignment models to score amino 
acid substitutions. 

 Linear Gap Penalty: For the baseline model, a linear 
gap penalty of -2 was applied. 

 Affine Gap Penalties: For the main experimental 
model, a gap opening penalty of -10 and a gap 
extension penalty of -1 were used. 

IV. RESULT AND ANALYSIS 

A. Alignment with a Linear Gap Penalty 

The initial experiment was conducted using a standard 

linear gap penalty, where the penalty for any gap, regardless 
of its length, was set to w = -2. The algorithm processed the 

query sequence (human p53 DNA-binding domain) and the 

target sequence (Drosophila melanogaster p53) and produced 

a maximal alignment score of 315. The optimal local 

alignment generated by this model is presented in Figure 8. 

https://github.com/varel183/Makalah_STIMA_13523008/blob/main/src/main.py
https://github.com/varel183/Makalah_STIMA_13523008/blob/main/src/main.py
https://www.uniprot.org/uniprotkb/P04637/entry
https://www.uniprot.org/uniprotkb/Q9N6D8/entry
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Fig. 8. Local Alignment using a Linear Gap Penalty 

(https://github.com/varel183/Makalah_STIMA_13523008/blob/main/results/ali
gnment_linear.txt)  

A visual inspection of the alignment in Figure 8 

immediately reveals a key characteristic, the alignment is 

fragmented by numerous, small, scattered gaps. This 

"peppering" of gaps is evident throughout the alignment, with 

examples such as D-D-RN-TFR and VDS-TP-PP-GTRV. This 

pattern is a direct consequence of the linear penalty model, 

where the cost to open a new gap is identical to the cost of 

extending one. The algorithm, therefore, has no incentive to 

group gaps and will frequently insert single gaps to achieve 
minor increases in the substitution score. From a biological 

standpoint, this scenario is less plausible as it implies a large 

number of independent, single-residue indel events, which are 

evolutionarily less frequent than single, larger indel events that 

might occur in a single mutational step. 

B. Alignment with an Affine Gap Penalty  

The second experiment utilized the affine gap penalty 
model with parameters set to Gopen = -10 and Gextend = -1. This 
model produced an optimal local alignment score of 151. The 
resulting alignment is shown in Figure 9. 

 

Fig. 9. Local Alignment using an Affine Gap Penalty 
(https://github.com/varel183/Makalah_STIMA_13523008/blob/main/results/ali

gnment_affine.txt) 

The structure of this alignment is markedly different from the 
one produced by the linear model. The most notable feature is 
the consolidation of gaps into larger, more cohesive blocks. 
Clear examples include IRVE----GNLR, VPY----EPPEV, and 
RKK-----GEPH. This is the intended outcome of the affine 
model. The high cost of opening a gap (-10) discourages the 

creation of new gaps, while the much lower extension cost (-1) 
incentivizes the lengthening of existing ones. This structure 
better represents a more probable evolutionary scenario, such 
as a single insertion or deletion event affecting a contiguous 
block of amino acids. Such events often correspond to changes 
in the structurally flexible loop regions of a protein, which 
connect its core secondary structure elements.  

C. Comparative Analysis 

Comparing the outputs from the two models (Figure 8 and 
9) highlights the profound impact of the scoring scheme on the 
resulting biological hypothesis. Although the linear model 
produced a numerically higher score (315 vs. 151), this is a 
mathematical artifact of its less restrictive nature. The affine 
gap model, despite its lower score, produces an alignment that 
is structurally and biologically far more coherent. 

The alignment generated by the affine model presents a 
more robust and parsimonious evolutionary hypothesis. The 
consolidation of gaps into coherent blocks suggests that the 
core structural elements of the p53 DNA-binding domain are 
preserved between human and Drosophila, with indel events 
largely confined to the loop regions that connect them. This is 
the expected pattern for a conserved functional domain. 

Furthermore, an examination of the conserved columns 
(indicated by |) in the affine alignment reveals the preservation 
of key functional residues. For instance, the alignment 
correctly pairs several Cysteine (C) and Arginine (R) residues, 
which are well-documented in the literature as being critical for 
the structural integrity (via zinc coordination) and DNA-
contact functions of the p53 DNA-binding domain. The linear 
model's fragmented alignment obscures some of these key 
correspondences. 

In conclusion, the affine model's ability to produce an 
alignment that correctly highlights the conservation of non-
negotiable functional sites, while confining gaps to likely non-
critical regions, provides strong evidence for its superiority in 
this context. It generates a more trustworthy computational 
hypothesis, suggesting that the Drosophila p53 protein indeed 
contains a domain that is not only similar in sequence but also 
likely conserved in both structure and function to its human 
counterpart. 

V. CONCLUSION 

This paper presented a rigorous implementation and a 
comparative analysis of the Smith-Waterman local alignment 
algorithm under two distinct gap penalty frameworks. The 
study systematically compared the outputs of a simple linear 
gap penalty model against those of a more complex, 
biologically-motivated affine gap penalty model. Through a 
practical case study focused on identifying the conserved 
DNA-binding domain of the human p53 protein within its 
Drosophila melanogaster homolog, this work aimed to 
demonstrate how the underlying mathematical model directly 
influences the quality and biological interpretability of 
sequence alignments. The implementation was successfully 
developed in Python, leveraging the NumPy library for 
efficient matrix computation, and was used to generate 
alignment data for both models. 

https://github.com/varel183/Makalah_STIMA_13523008/blob/main/results/alignment_linear.txt
https://github.com/varel183/Makalah_STIMA_13523008/blob/main/results/alignment_linear.txt
https://github.com/varel183/Makalah_STIMA_13523008/blob/main/results/alignment_affine.txt
https://github.com/varel183/Makalah_STIMA_13523008/blob/main/results/alignment_affine.txt
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The central finding of this study is that the affine gap 
penalty model, despite often yielding a lower numerical score, 
produces alignments that are demonstrably superior in 
biological relevance. While the linear model generated 
fragmented alignments peppered with small, scattered gaps, the 
affine model successfully consolidated these into larger, 
contiguous blocks. This outcome aligns more closely with the 
current understanding of molecular evolution, where single, 
large-scale insertion or deletion events affecting structural 
loops are considered more probable than numerous, 
independent single-residue mutations. Consequently, the affine 
gap penalty model generates a more robust and structurally 
coherent alignment, providing a stronger and more trustworthy 
computational hypothesis for the presence and boundaries of a 
conserved functional domain. 

While this study successfully demonstrated the superiority 
of the affine model in a specific and important case, several 
avenues for future research remain open. First, the performance 
of the Python implementation, while suitable for this analysis, 
could be significantly optimized for large-scale database 
searches. This could be achieved through reimplementation in 
a lower-level compiled language like C++ or by exploring 
parallelization techniques. Second, the conclusions could be 
further validated by applying this comparative analysis to a 
broader range of protein families with different evolutionary 
rates and structural characteristics. Finally, future work could 
explore even more sophisticated scoring schemes, such as 
context-specific or convex gap penalty models, to investigate 
whether further gains in biological accuracy can be achieved, 
continuing the pursuit of computational models that more 
perfectly mirror evolutionary reality. 

VIDEO LINK AT YOUTUBE 

https://youtu.be/4oS7rDhzv0k  

GITHUB 

https://github.com/varel183/Makalah_STIMA_13523008  
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